
![]() |
@wtf | |
Seaborn Statistical Data Visualization |
||
1
Replies
21
Views
1 Bookmarks
|
![]() |
@wtf | 8 August 25 |
Seaborn is a high-level library built on top of Matplotlib that makes it easier to create beautiful, informative visualizationsespecially for statistical graphics. Why Use Seaborn? Simplifies complex plots with less code Built-in themes and color palettes Excellent for visualizing relationships and distributions Itegrates smoothly with Pandas DataFrames Great for correlation, regression, and categorical data Core Features 1. Quick Visualizations python import seaborn as sns import pandas as pd df = sns.load_dataset('tips') sns.histplot(df['total_bill']) sns.boxplot(x='day', y='total_bill', data=df) sns.scatterplot(x='total_bill', y='tip', data=df) 2. Heatmaps & Correlation python corr = df.corr() sns.heatmap(corr, annot=True, cmap='coolwarm') 3. Categorical Plots python sns.catplot(x='day', y='tip', hue='s*x', kind='bar', data=df) 4. Regression Plots python sns.lmplot(x='total_bill', y='tip', data=df) 5. Styling & Themes python sns.set_style('whitegrid') sns.set_palette('pastel') Common Functions - sns.histplot(): Histograms - sns.boxplot(): Box plots - sns.heatmap(): Heatmaps - sns.scatterplot(): Scatter plots - sns.pairplot(): Plot pairwise relationships - sns.lmplot(): Linear regression plots Real-World Use Cases Quick visual summary of data Statistical analysis visuals Exploratory data analysis Feature relationships and insights Summary Ideal For: Statistical and categorical plotting Strength: Simplicity + beauty Bonus: Less code, more elegance |
||


