
![]() |
@wtf | |
Matplotlib Data Visualization |
||
1
Replies
19
Views
2 Bookmarks
|
![]() |
@wtf | 8 August 25 |
Matplotlib is the fundamental library for creating a huge variety of static, interactive, and animated plots in Pythonmaking it a must-know for any data scientist or analyst. Why Use Matplotlib? Create a wide range of plots (line, bar, scatter, histogram, pie, etc.) Highly customizablestyle, colors, labels, legends, grids Save plots as images (PNG, JPG, PDF) Integrates with Pandas and NumPy Essential for presenting and exploring data visually Core Components 1. Figure & Axes The main canvas and plotting area python import matplotlib.pyplot as plt fig, ax = plt.subplots() ax.plot([1, 2, 3], [4, 5, 6]) plt.show() 2. Plotting Functions Fast creation of common charts python plt.plot([1, 2, 3], [4, 5, 6]) Line plot plt.bar(['A', 'B', 'C'], [10, 8, 6]) Bar chart plt.scatter([1, 2], [5, 7]) Scatter plot plt.show() 3. Customization python plt.title('My Plot') plt.xlabel('X-axis') plt.ylabel('Y-axis') plt.legend(['Series 1']) plt.grid(True) 4. Saving Figures python plt.savefig('myplot.png') Common Operations - plt.figure(), plt.subplots(): Start a new plot or figure - plt.show(): Display the plot window - plt.hist(): Histogram - plt.pie(): Pie chart - plt.errorbar(): Error bars - Customize ticks, colors, markers, and much more Real-World Use Cases EDA (Exploratory Data Analysis) Report-ready visualizations Data presentations and dashboards Making findings clear and impactful for any audience Summary Ideal For: Any kind of data plotting and presentation Strength: Power, flexibility, and universality Community: Huge, so hundreds of examples/tutorials online |
||


